BUCKLING ANALYSIS OF CYLINDRICAL SHELL

Objective: Extract 10 critical load factors for the cylindrical model shown in Figure 1

Geometric Properties

Radius=2m Height=5m Thickness=0.005m

Boundary condition

Fixed at bottom surface Ux=Uy=0 at top surface

Material properties

E=7e+10 *N/m²* v=0.3

Loading condition

Force=-50KN/m on top edge of the cylinder

PROCEDURE

STEP

1. Create a Cylindrical surface

Command : SURFACE, CYLINDER

Menu : Geometry \rightarrow Surface \rightarrow Create \rightarrow Cylinder

Parameters :

Centre	C0:0:0:0(Select the	
	origin/ create point at	
	[0,0,0])	
Height	5	
Radius	2	
Axis	Z axis	

At the end of the above operations, your screen should look like this.

*Now change to bottom view

2. Meshing the surface using quadilateral elements

Command : MESH, QUAD

Menu : Mesh → MeshGen → QUAD

 Parameters
 Surface
 1

 Initial Size
 0.224282

 Method
 Mapped

 Type
 4 Node

 Divisons

At the end of the above operations, your screen should look like this.

3. Delete surfaces

Command : SURFACE, DELETE

Parameters

List of surfaces	1

4. Specify material properties

:

:

Command : MATERIAL, ISOTROPIC

Menu : Property \rightarrow Material \rightarrow Structural \rightarrow Isotropic

Parameters

Elements	All
Young's Modulus	7e+10
Nu	0.3
Density	
Alpha	
Label	User defined name(Ex:
	MAT1)

5. Specify thickness

:

:

Command :	THICKNESS, ADD
-----------	----------------

Menu : Property \rightarrow Physical \rightarrow Thickness

Parameters

Elements All	
Thickness 0.005	
Label	User defined name (Ex: T1)

6. Specify Displacement Boundary Conditions

a. Specify boundary conditions at bottom edges

Command	: DISPBC, ADD
---------	---------------

Menu : Load/BC→Structural→DispBC

Parameters

Nodes	Select the bottom circumference nodes	Translation
DispBC	0/0/0/0/0/0	 Rotation
LCS ID	0	

Displacement BC

Rz 0

Apply Cancel

Label	User Defined name	
	(Ex:SPC1)	

b. Specify boundary conditions at top edges

Parameters

:

Node IDs	Select the top circumference nodes	Translati
BC value	0/0//0/0	Uz
LCS ID	0	Rotation
Label	User defined name (Ex: SPC2)	I▼ Rx I▼ Ry I▼ Rz

At the end of the above operations, your screen should look like this.

7. Specify Point load along top circumference of cylinder

Command : POINTLOAD, ADD

Menu : Load/BC \rightarrow Structural \rightarrow Point Load

Nodes	Select ton circumference nodes
TIOUES	Select top circumference nodes

			1T647B17
Parameters :	Magnitude	-15700(Total load/no. of top circumferential nodes)	
		Component	Fz
		LCS	0
		Label	User defined name (Ex: FORCE1)

At the end of the above operations, your screen should look like this.

8. Set the analysis type

Command : ANTYPE, ADD

Menu : Analysis →AnalysisType

Parameters

Analysis Types Buckling

9. Specify Static generate data

:

Command : BUCKLINGGEN, ADD

Menu : Analysis →Buckling→General

Parameters

Number of mdoes	10
Stress Output	Yes

10.Save the project model

:

Menu : File \rightarrow Save

11.Activate FEAST solver

Click Run Solver button

At the end of the above operations, your message box should look like this.

After the solution gets completed, "Finished successfully" message appears in the message box.

12.Perform post processing

a. Critical Load factor

Command

:POST,TABLEVIEW

Critical Load Factor

Menu : Post \rightarrow View table

Parameters :

Item Critical Load Factor

At the end of the above operations a table as shown below appears.

	Critical Load Fact
1	10.2646
2	10.4537
3	10.5452
4	10.6891
5	10.8464
6	11.4039
7	11.8696
8	12.3832
9	13.2631
10	13.8162

b. Buckling Mode Shape

Command : POST, DEFLECTION

Menu : Post →Deflection

Parameters :

Item	Buckling Mode
Modes	1 : 10.2646
Scale	1

At the end of the above operations, your screen should look like this,

