

100

All dimensions are in mm

Objective: Compute the first 20 eigen values of a three layer composite plate shown in Figure 1 of lamina thickness 1/2/1, lamina angle $0^0/90^0/0^0$ for the given material property.

Material property

 $E_{11}=7E+4, E_{22}=E_{33}=5E+3, v_{12}=v_{23}=0.2, v_{13}=0.3, G_{12}=2E+3, G_{13}=G_{23}=1E+3$

PROCEDURE

1. Create keypoints

Command :POINT,ADD

Menu : Geometry \rightarrow Keypoint \rightarrow Create \rightarrow Add

Parameters :

Point Data	0/0/0

Similarly create key points at (100/50/0)

At the end of the operation your screen should look like this.

F

2. Create surface

Command :SURFACE, RECT2P

Menu : Geometry \rightarrow Surface \rightarrow Create \rightarrow Rect2P

Parameters:

Corners	Select the points P1 and
	P2 using the filter
	options above parameter
	box.
	Snap to point
Output ID	

At the end of the operation your screen should look like this.

F

3. Generate mesh

Command:MESH, QUAD

Menu : Mesh→MeshGen→QUAD

Parameters:

Surface	Select the surface
	created
Element Size	7.52689
Method	Mapped
Туре	4-Node
Divisions	Right/left click on
	surface edge to alter
	the subdivisions
Bias	

At the end of the operation your screen should look like this.

4. Assignmaterialproperty

Command:MATERIAL,ORTHOTROPIC

Menu : Property→Material→Structural→Orthotropic

Parameters:

Elements	
Longitudinal modulus	70000
Transverse modulus	5000
Normal Modulus	5000
NuL-T	0.2
NuL-N	0.3
NuT-N	0.2
Density	2.8E-09
Alpha L	0
Alpha T	0
Alpha N	0
Shear Modulus L-T	2000
Shear Modulus L-N	1000
Shear Modulus T-N	1000
Tensile Strength L	0
Compressive Strength	0
L	
Tensile Strength T	0
Compressive Strength	0
Т	
In plane Shear	0
Strength	
Tsai-Wu Coefficient	0
Label	

Note:

**Do not specify any Element IDs here.

5. Specifythicknessfor layers

Command:THICKNESS, ADD

Menu : Property → Physical → Thickness

Elements		
Thickness	1	:
Label	Layer 1 & 3	

Parameters:

Note:

**Here also do not specify the element ID's.

Create another set of thickness data with thickness value 2mm for second layer.

6. Specifymaterial angle

Command:MATANGLE, ADD Menu : Property →Physical →Material Angles

Parameters:

Angle	0
Reference	Element edge
LCS	
Label	Angle1

Note:

**Create another set of material angle with value 90 for second layer.

Verify whether two set of material angle values were defined in 'Edit' option.

7. Create layup details

Command	:MATERIAL, LAYERED
Menu	: Property→Material→Structural→ Layered

Parameters

:

\mathbf{L}_{1} = \mathbf{D}_{2}	
	⊡∣∙
Label	

Now the composite layer definition is done.

8. Set Analysis Type

Command :ANTYPE, ADD

Menu : Analysis→Analysis Type

Parameters

Analysis Types Free Vibration

9. Set free vibration general data

:

Command:FREEVIBGEN, ADD

Menu : Analysis \rightarrow Free Vibration \rightarrow General

Parameters:

Mode Extraction	Number of modes
Number of modes	20
Mass Option	Lumped
Effective Mass	No

10. Save the project model

Menu:File →Save

11. Activate FEAST solver

Click Run Solver button

After the solution gets completed, "Finished successfully" message appears in the message box.

12. Perform Post Processing

i) View result. Frequency

Command:POST, TABLEVIEW

Menu : Post \rightarrow View Table

Parameters:

Item Frequency

At the end of the operation your screen should look like this.

Frequency

Mode	Frequency(Hz)
1	0
2	0
3	0
4	0
5	4.82168e-05
6	0.000142483
7	644.488
8	1564.01
9	1857.39
10	2867.19
11	3009.39
12	3095.58
13	3286.79
14	3542.3
•	}
Сору	Close