## FREE VIBRATION ANALYSIS OF A SYSTEM CONSISTING OF BEAM, SPRING AND MASS ELEMENTS



All dimensions are in mm



Material property: E = 72GPa, v = 0.3,  $\rho = 2800 \text{ kg/m}^3$ 

Perform free vibration analysis of the system shown in Figure 1. The system contains a cantilever beam whose free end is attached to two springs one in axial direction and other in transverse direction. A mass of 3.5 kg is attached to the middle of the beam.

F



#### **PROCEDURE**

#### 1. Create Keypoints

Command: POINT, ADD

Menu: Geometry  $\rightarrow$ Key point $\rightarrow$  Create  $\rightarrow$ Add

Parameters:

Point Data 0/0/0

Similarly create key points at (1000/0/0) also. For defining node for the end points of the springs, whose dimensions are irrelevant create key points at (1100/0/0) and (1000/-100/0) At the end of the operation your screen should look like this.



#### 2. Create Curve

Command: CURVE,LINE

| Menu | : Geometry | $\rightarrow$ Curve $\rightarrow$ | Create $\rightarrow$ Line |
|------|------------|-----------------------------------|---------------------------|
|      |            |                                   |                           |

| Parameters: | End Points | Pick the two end points for the beam |
|-------------|------------|--------------------------------------|
|             |            |                                      |

At the end of the operation your screen should look like this.



#### 3. Generate mesh

Command :MESH,BAR

Menu : Mesh→MeshGen→Bar

Parameters :

| Curve       | (Pick the curve from the window )                                                            |  |
|-------------|----------------------------------------------------------------------------------------------|--|
| Element Siz | 50 (Click on two points on the curve or type initial size for calculating element divisions) |  |
| Туре        | 2 - Node                                                                                     |  |
| Divisions   | (Click on the curve to adjust the no. of subdivisions)                                       |  |
| Bias        |                                                                                              |  |

б

*Note* :Element size can be entered manually or click on two points on the curve to obtain an approximate the element size. Change the subdivisions using right or left mouse button.





#### 4. Create node for the end points of the spring

Command : NODE, ADD

Menu : Mesh  $\rightarrow$ Node  $\rightarrow$ Create  $\rightarrow$  Add

Parameters :

| Coordinates | 1100/0/0  |
|-------------|-----------|
| Туре        | Cartesian |

Similarly create node at (1000/-100/0) also

#### 5. Erase points

Command :POINT,ERASE

Menu : Geometry→Key Point →Miscellaneous→Erase

Parameters :

List of points (Select all the key points to erase)

#### 6. Erase curve

Command :CURVE,ERASE

Menu : Geometry→Curve→Miscellaneous→Erase

Parameters:

List of curves (Select the curve to erase)

Enter the curve ID in the box or pick the curve using mouse pointer.



#### 7. Create an element

Command :ELEMENT,ADD

Menu : Mesh $\rightarrow$ Element $\rightarrow$ Create $\rightarrow$ Add

Parameters

| Nodes     | (Select the two node at the right end of the beam) |
|-----------|----------------------------------------------------|
| Dimension | 0                                                  |
| Туре      | Spring                                             |

#### 8. Create spring element

Command: SPRING, ADD

Menu : Property→Physical→Spring

| Element | (Select the spring element) |
|---------|-----------------------------|
| ТХ      | 10000                       |

Parameters:

| TY    | 0 |
|-------|---|
| TZ    | 0 |
| RX    | 0 |
| RY    | 0 |
| RZ    | 0 |
| Label |   |

Similarly create spring element in Y direction also (Give value in TY)





#### 9. Create element

Command : ELEMENT, ADD

Menu : Mesh $\rightarrow$ Element $\rightarrow$ Create $\rightarrow$ Add

Parameters

| Nodes     | (Select the node at $x=500$ ) |
|-----------|-------------------------------|
| Dimension | 0                             |
| Туре      | Mass                          |

#### **10. Create mass element**

Command : MASS,ADD

Menu : Property→Physical→Mass

Parameters :

| Elements | (Select the node at the $X = 500$ ) |
|----------|-------------------------------------|
| MX       | 0.003500000                         |
| MY       | 0.003500000                         |
| MZ       | 0.003500000                         |
| IXX      | 0                                   |
| IYY      | 0                                   |
| IZZ      | 0                                   |
| IXZ      | 0                                   |
| IYZ      | 0                                   |



#### **11. Apply Boundary Condition**

Command :DISPBC,ADD

Menu : Load/BC → Structural → DispBC

Parameters :

| Nodes  | (Select the node at X=0) |  |
|--------|--------------------------|--|
| DispBC | Arrest all DOF           |  |
| LCS    |                          |  |
| Label  |                          |  |

| ranslation           | Apply   |
|----------------------|---------|
| ₩ Ux 0               | Cancel  |
| ₩ Uy 0               |         |
| <b>∀</b> Uz 0        |         |
| Rx 0<br>Rx 0<br>Ry 0 | 50<br>7 |
|                      |         |

Apply fixed boundary condition at the free ends of the springs also



At the end of the above operation your screen will look like this.



#### 12. Apply Beam Property

Command :BEAMPROP,ADD

#### Menu : Property→Physical→ Beam Properties →Cross Section

Parameters:

| Elements        | (Select all the beam elements) |
|-----------------|--------------------------------|
| Cross Section   |                                |
| Centroid Offset |                                |
| Label           |                                |





б

At the end of the above operation your screen will look like this.

#### **13. Apply Material Property**

Command :MATERIAL, ISOTROPIC

Menu : Property→Material→Structural→Isotropic

| Elements | (Select  | all | the | beam |
|----------|----------|-----|-----|------|
|          | elements | 5)  |     |      |



#### Parameters

| : | Young's Modulus | 72000   |
|---|-----------------|---------|
|   | Nu              | 0.3     |
|   | Density         | 2.8E-09 |
|   | Alpha           | 2.3E-05 |
|   | Label           |         |

## 14. Set Analysis Type

Command :ANTYPE,ADD

Menu : Analysis→Analysis Type

Parameters :

| Analysis Types | Free Vibration |
|----------------|----------------|
|----------------|----------------|

## 15. Set free vibration general data

Command :FREEVIBGEN, ADD

Menu : Analysis  $\rightarrow$  Free Vibration  $\rightarrow$  General

Parameters :

| : | Mode Extraction | No. of modes |
|---|-----------------|--------------|
|   | No. of modes    | 20           |
|   | Mass option     | Lumped       |
|   | Effective mass  | No           |

## 16. Save the project

Menu : File →Save Save the file to desired directory



Click Here

#### 17. Activate solver

Click Run Solver button

|                                                                                               | Geometry IM                                                                                  | iesn Loai | и/вс гор                     | ity Ana                                     | iysis Pos                          | t <u>w</u> indows      | Teib      |     | <br>E |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|------------------------------|---------------------------------------------|------------------------------------|------------------------|-----------|-----|-------|
| ₫₿ ◀ )                                                                                        |                                                                                              | 208       | ን 🖸 📝                        |                                             | <u>ובי לפ</u>                      | A 1                    |           | i   |       |
| Model   Main   Sho<br>Objects<br>Labels<br>Background<br>Paint Mode<br>Shading<br>Colour List | v   Log Colour   Se<br>Background1<br>Background2<br>Highlight<br>Global Axis<br>Axis Labels | ettings   | FEAST 2<br>VSSC /            | ]<br>123.00<br>ISRO                         |                                    |                        | •         |     |       |
| Load Store                                                                                    |                                                                                              |           |                              |                                             |                                    |                        |           |     | :     |
|                                                                                               | ERIAL, EDIT                                                                                  | -         |                              |                                             |                                    |                        |           |     |       |
| MAT                                                                                           | A11.                                                                                         | ß         |                              |                                             |                                    |                        |           |     |       |
| MA <sup>1</sup><br>Elements                                                                   | ALL                                                                                          |           |                              |                                             |                                    |                        |           |     |       |
| MA1<br>Elements<br>Young's Modulus                                                            | 720000                                                                                       | _ 🔤       |                              |                                             |                                    |                        |           |     |       |
| MAT<br>Elements<br>Young's Modulus<br>Nu                                                      | 720000<br>0.3                                                                                |           |                              |                                             |                                    |                        |           |     |       |
| MAT<br>Elements<br>Young's Modulus<br>Nu<br>Density<br>Aloha                                  | 720000<br>0.3<br>2.3E-05<br>2.8E-09                                                          |           | Y                            |                                             |                                    |                        |           |     |       |
| MAT<br>Elements<br>Young's Modulus<br>Nu<br>Density<br>Alpha<br>Label                         | 720000   0.3   2.3E-05   2.8E-09                                                             |           | y<br>O                       | X                                           |                                    |                        |           |     |       |
| MAT<br>Elements<br>Young's Modulus<br>Nu<br>Density<br>Alpha<br>Label                         | 720000   0.3   2.3E-05   2.8E-09                                                             |           | \$> Line<br>Mode             | ar Sol                                      | ver :<br>puted:2                   | Cholesky<br>0          |           |     |       |
| MAT<br>Elements<br>Young's Modulus<br>Nu<br>Density<br>Alpha<br>Label<br><u>Cancel</u>        | ALL   720000   0.3   2.3E-05   2.8E-09                                                       |           | \$> Line<br>>>> ELAP<br>Fini | ar Sol<br>s comp<br><u>SED TI</u><br>shed s | .ver :<br>puted:2<br>ME<br>Success | Cholesky<br>0<br>fullv | ,<br>ОМ:: | 0 S |       |

After solving "Finished successfully" message will be displayed in the message box

## 18. Post Processing

i. View Results

## Command: POST, TABLEVIEW

Menu : Post→View Table

Parameters :

Frequency

The following table will be displayed

Frequency

Item

| lode | Frequency(Hz) |
|------|---------------|
| 1    | 14.5512       |
| 2    | 38.8352       |
| 3    | 72.559        |
| 4    | 266.789       |
| 5    | 354.609       |
| 6    | 469.873       |
| 7    | 527.214       |
| 8    | 722.532       |
| 9    | 735.097       |
| 10   | 920.846       |
| 11   | 1129.17       |
| 12   | 1284.44       |
| 13   | 1398.13       |
| 14   | 1761.44       |
|      | <b> </b> •    |
| Conv | Close         |

## ii. Deformed Shape

Command :POST,DEFLECTION

Menu : Post→Deflection

| Parameters : | Item  | Mode Shape                         |  |  |  |
|--------------|-------|------------------------------------|--|--|--|
|              | Modes | Select required mode from the list |  |  |  |

The mode shape will be displayed as follows



